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Summary 

In this paper we consider a semi-infinite elastic plate, placed in a parallel flow, which performs a waving motion 
induced by the fluid. We discuss some aspects of the possibility of a smooth flow at the trailing edge. Numerical 
calculations have been made for a physically realistic part of the parameter space. 

1. Introduction 

In steady and unsteady linearized profile theory it is generally assumed that the flow is 
smooth at the trailing edge of a profile. This means that no pressure jump or infinite 
velocities occur at this edge. In other words, it is assumed that we satisfy the Kutta-condi- 
tion by which the mathematical problem has a unique solution. In fact we can always add 
an arbitrary circulation to the flow around a profile of which the shape, possibly as a 
function of time, is prescribed. 

The shape of an elastic profile, however, cannot be prescribed because it is flexible and 
gives way to the pressures. The addition of a circulation changes the pressures and by this 
the camber of the profile. Hence it is not certain that a smooth flow at the trailing edge 
can be obtained. 

This hydro-elastic phenomenon can occur, for instance, at the trailing edge of a blade 
of a ship's screw. Such a blade can carry out elastic vibrations which cause the "singing" 
of a screw. Questions are: can these vibrations be described by waves in the blade and, if 
this is true, can the Kutta  condition be satisfied for the waving motion of the elastic 
profile? 

In order to obtain some insight in this problem we discuss a simple two-dimensional 
model for which the behaviour of the flow at the trailing edge can be determined 
analytically. It  consists of a semi-infinite plate of constant bending stiffness and mass 
distribution per unit of area. It is placed in an incompressible and inviscid flow parallel to 
the plate, perpendicular to the edge of the plate, which is the trailing edge. 

By solving a Wiener-Hopf problem, conditions have been derived for the flow to be 
smooth at the trailing edge. Then it has to be investigated by numerical means if these 
conditions can be satisfied. This has been done in this paper  for only a part  of the set of 
possible parameters for which mechanically reasonable motions occur. It  has been shown 
that for these values the above-mentioned conditions can not be satisfied. More numerical 
work can be carried out in the future for the remaining values of the parameters although 

27 



28 

the physical meaning of a configuration with other parameter values is not so clear. 
Anyhow, this is a laborious task. The required numerical integrations are quite com- 
plicated because of the occurrence of poles on the lines of the integration in different 
configurations for different sets of parameters. Finally, we mention that the analogous 
problem for a semi-infinite membrane has been formulated in [1]. 

2. The two-sided infinite plate 

A Cartesian coordinate system ~, ~, ~ is embedded in a fluid with density p, flowing with 
a uniform velocity U in the negative ~ direction. 

In this flow is placed a two-sided infinite plate, which in its undisturbed position 
coincides with the plane ~ = 0. In the following we assume the phenomena to be 
independent of the 2 coordinate, so the problem is a two-dimensional one (Figure 2.1.). 
Also we assume the deviations of the plate from the plane y = 0 to be small with respect 
to occurring wavelengths and we develop a linear theory. 

The fluid will be, in the first instance, compressible and endowed with a bulk viscosity 
determined by the coefficient of expansive friction i [2]. By introducing this type of 
viscosity the flow remains irrotational. Then the velocities induced in the fluid by its 
interaction with the plate can be derived from a disturbance potential ~(~, y, [), in which 
i represents time. The linearized equation for this potential becomes [2] 

( a 2 _ +  a_~2)(~p_ , u  0~ ~ a~)  _ u  2 02~_~ 2u  02t-p 1 --a2~=o, (2.1) 
a~2 p¢2 ox [--p¢2 ~ ¢2 --0~2 ¢2 Ox ai ¢2 0i2 

where c is the velocity of sound. 
The displacement of the plate in the ~ direction is denoted by ~(~, i), its flexural 

rigidity by D and its mass per unit area by ~.  The linearized boundary condition for ~p at 
the plate can be formulated as 

0y = 0~ ai u-~-ff, ; = 0 ,  (2.2) 

in which ~+ and ~p- are the limiting values of ~ from above (y > 0) and from below 

U 

Figure 2.1. The waving motion of a two-sided infinite plate. 
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(y < 0), respectively (Figure 2.1). By use of the unsteady Bernoulli equation the equation 
of motion of the plate becomes 

m 8i 2 ax 4 - ~ / ~ - - p  ~ - U  +p  ~ -  U , 9 = 0 ,  (2.3) 

where ~ is a damping coefficient. In fact, we assume that the plate is coupled to its neutral 
position (the plane ~ = 0) by means of continuously distributed dashpots. Then we have 
to solve equation (2.1) subject to conditions (2.2) and (2.3). 

We assume harmonic time dependence, 

and 

Up(~, .y, [ ) =  ~(x,  y)  e -i'°' (2.4) 

and 

equation 

0__2_ 2 + ~  ~ _  ~U 8~ iw~_ 

with boundary conditions 

- i w ~ - U  a~ a~+ a ~  = a y  ' y = 0 ,  

( - ~ 0 2 ~ + D  - l ~ W W = - 2 O  i w ~ + + U  , ~ = 0 .  (2.9) 

We now introduce the dimensionless quantities 

x=YwU -1, y=ywU -1, w=~wU -~, t=iw, m=~wU-lo -1, O--D*o3U-Sp -1, 

~"~o)V -2, ~=~o)V-2p -1, 'l~=~u-lp -1, N= U2/c 2. (2.10) 

Then the boundary-value problem becomes 

0w ~ +  
- i w  8x 8y ' y = 0 ,  (2.12) 

U 2 ~2~ 2iwUSgP w 2_ 
c 2 0~2 --¢2 ~ -f" --c2 ¢P = O, (2.7) 

(2.8) 

~(~,  i) = ~ (~)  e -i'°i. (2.5) 

On account of "symmetry" we have 

C~(y, ~ ) =  - ~ p ( ~ , - y ) .  (2.6) 

Substitution of (2.4), (2.5) and (2.6) into (2.1), (2.2) and (2.3) yields for C~(Y, y) the 
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-mw+D 04w i ~ /w=-2 ( i cp++aq°+) ,  y = 0 .  
O x  4 - 

(2.13) 

In the following we are interested in the limit of the solution for N and , / tending to 
zero in one way or another which will be discussed in Section 4. It is not necessary to 
consider also the limit case of a vanishing coefficient of bulk viscosity c because, when N 
tends to zero, the velocity of sound becomes infinite, so the fluid will become incom- 
pressible. The equation for the disturbance potential of the fluid (2.11) then reduces to the 
Laplace equation. 

We now try to find the displacement of the plate and the disturbance potential in the 
form 

w(x) =A e -ixx (2.14) 

and 

cp(x, y )  = e -{x2-Ntx-1)2/O +ieN(;~-l))}t/2Y-i;~xde=fe-{B(X)}*/2y-ihx, y > 0, (2.15) 

with 

N ( A -  1) 2 ~1/2 
R e ( B ( A ) )  1/2 = Re ~2 _ 1 + i-~-(-h --~- 1) ] > 0, (2.16) 

where A is still an arbitrary constant. Then q0(x, y) satisfies equation (2.11) and, by (2.6), 
vanishes for y ---, + oo for all values of X. Writing the argument of the square root (2.16) 
in the form 

B(X) = x2(1 + ieN(X - 1)) - N ( ~ ,  - 1) 2 

1 + icN(X - 1) 
(2.17) 

we see there are three zeroes (~1, h2 and ~3) of the numerator and one of the 
denominator (h4). These four points are the branch points of the square root and are 
given by 

hl=N1/2-N+(l+ 2)Na/2+O(N2), 

i 
~4 = 1 + c---N" 

(2.18) 

In the complex h-plane we can find precisely three lines on which B(X) is real and 
negative. One of these lines starts at ~'1 and runs towards infinity, essentially along the 
imaginary axis in the upper halfplane; another starts at ~2 and runs towards infinity 
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Figure 2.2. The complex h-plane with the cuts. 
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essentially along the imaginary axis but now in the lower halfplane. Finally we have a line 
connecting X 3 and X 4- 

We introduce these three lines as cuts in the complex h-plane (Figure 2.2). Then the 
argument of the complex quantity B(X) stays within the interval (-~r, rr). We define the 
square root (B(X)) 1/2 to be equal to 1 for X--1. Then, first, the root has become 
single-valued and, second, (2.16) is satisfied for all values of X. 

Substitution of (2.14) and (2.15) into (2.12) and (2.13) yields 

A( i - iX)  = (B(X)} '/2 (2.19) 

and 

A(m + iT - X4D) = 2(i - iX), (2.20) 

respectively. Hence X has to satisfy the equation for the wavelength 

{ B(X)}I/2(m + i71 - X4D) = -2(1 - X)2, (2.21) 

where, by (2.16), the real part of the square root has to be positive. 

3. The equation for the wavelength 

Temporarily, we set N and ~/equal to zero. Then the equation for the wavelength (2.21) 
changes into 

(X2)1/2(m-X4D) = -2(1 -X)  2, Re(X2 )1/2 > 0. (3.1) 
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We define 

f(X)=DXS+2X2-(m+4)X+2, R e X < 0 ,  (3.2) 

and  

g(X)=DXS-2X2-(m-4)X-2, Re X > 0 .  (3.3) 

Then  the roots  of  (3.1) are the zeroes of  f ( X )  and  g(X)  subject  to the condi t ions  Re X < 0 
and  Re X > 0, respectively.  

F i rs t  we cons ider  f ( X ) ,  hence Re X < 0. I t  is seen f rom Figure  3.1 that  when X travels 
a long the con tour  ind ica ted  in F igure  3.1a we will have by  the pr inc ip le  of  the a rgument  
[3] one zero of f ( X )  when D - m - 4 < 0 and  three zeroes when D - rn - 4 > 0, bo th  
cases with Re X < 0. 

Since the coefficients of  (3.2) are real, the zero of  f ( X )  for D - m - 4 < 0 is real. When  
D - m - 4 > 0, we have one real and  two complex  conjugate  zeroes. Indeed,  let us assume 
the three zeros to be  real. Then the first der ivat ive of  f ( X )  must  have two negat ive  real  
zeroes. However ,  its a rgument  increases only by  2~r when X travels a long the contour  of 
F igure  3.1a. Hence  the first der ivat ive of  f(X) possesses only one zero with Re X < 0 
which cont rad ic t s  our  assumpt ion .  

Next  we cons ider  the funct ion g(X),  hence Re X > 0 and  suppose  4 > m. The  number  
of  revolut ions  of  g(X)  a round  the origin when % travels a long the con tour  of  F igure  3.2a is 
easily seen to be  one  for D - m + 4 < 0 and  three for D - m + 4 > 0 (F igure  3.2b). F o r  the 
case of three zeroes ( D  - m + 4 > 0) an ana logous  reasoning  as before  shows that  one zero 
is real  and  two zeroes are complex  conjugate.  

N o w  let us discuss g(X), (Re X > 0), when m ~< 4. F o r  X travell ing a long the con tour  of  
F igure  3.2a, the cor responding  con tour  is given in  F igure  3.3. Hence,  in this case, there are  
three zeroes with Re X > 0. 

Im k 

Re k 

,Im f(k) 

I ' -  

III \,: R. f (),.) 

(o) (b) 

Figure 3.1. The number of zeroes of f(~), (3.2), D - m - 4  < 0: . . . . . .  , D - m - 4  > 0: . . . . . .  . 
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F i g u r e  3.2. T h e  n u m b e r  o f  z e r o e s  o f  g ( ~ ) ,  (3.3),  fo r  m > 4, D - m + 4  < 0:  . . . . . .  , D - m + 4  > 0:  . . . . . .  . 

W e  n o w  i n v e s t i g a t e  t h e  case  o f  t h r e e  rea l  zeroes .  T h e  f u n c t i o n  g ( h )  p o s s e s s e s  a z e ro  o f  

o r d e r  two  if  

D) ,  5 - 2X 2 "-- ( m  - 4 ) X  - 2 = 5D~, 4 - 4X - ( m  - 4)  = 0. ( 3 .4 )  

E l i m i n a t i o n  o f  D y ie lds  two  ze roes  o f  o r d e r  two,  X = v I a n d  X = P2, fo r  t h e  f u n c t i o n  
g ( X ) :  

4 -  m -  ( m z -  8m + 1} 1/2 (3 .5 )  

v l -  3 

Img(X) 

=- Re g ()~) 

F i g u r e  3.3. T h e  n u m b e r  o f  z e r o e s  o f  g ( X ) ,  (3.3) ,  f o r  m ~< 4. 
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and 

4 - m + { m  2 - 8 m  + 1} 1/2 

P2 -- 3 (3.6) 

In order that these zeroes be real (and hence positive, see Fig. 3.4), we must  have instead 
of  m ~< 4 the stronger condit ion 

m < 4 -  1¢~-. (3.7) 

Then we have 

1 < Pl < P2, (3.8) 

while the corresponding values of D are given by 

4tq + m - 4 
D 5P 4 (3.9) 

and 

4~' 2 + m - 4 4v I + m - 4 
D 5~,4 > 5v 4 (3.10) 

The inequality sign in (3.10) follows from straightforward calculation. 
First we suppose (3.7) to be satisfied. Since the derivative of  g ( ~ )  with respect to D is 

positive for positive X, we have three real zeroes for 

4v 1 + m - 4 4v 2 + m - 4 
< D < (3.11) 5~ 4 5~ 4 , 

and one real zero for the other values of D. 
Next we discuss the remaining values for m, namely 4 - 1 ~  < m ~< 4. Suppose there 

exist three real zeroes for some values of  D. Then f rom the special form of g ( ~ )  it follows 
that by increasing D there must arise a real zero of  order  two of  g(~) .  However,  for the 

- 2  

Q ( X )  ~ ( X )  

~ X  

- 2  

Figure 3.4. The real zeroes of order two of g (h )  for different values of D. 
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Figure 3.5. The partition of the D, m-plane with respect to the number and types of the roots of (3.1). 

values of m under  discussion (4 - ~ < m ~< 4) there does not  exist a real zero of  o rder  
two of g(?~) for any value of D on account  of (3.7). Hence  we have one real zero and two 
complex  conjugate  zeroes for all values of D when 4 - ~ < m ~< 4. 

In  o rder  to give a survey of the discussion above,  we divide  the D, m-plane  into regions 
(F igure  3.5.) which are of  s ignif icance for the number  and  types of  the roots  of  (3.1): 

R e g i o n I ,  with D - m + 4 < 0 ,  
Reg ion  III ,  with D - m - 4 > 0, 
Region  IV, with 

4~, 1 + m - 4 4u 2 + m - 4 
< D < (3.12) 

Region  II, with D - m + 4 > 0 and D - m - 4 < 0, minus  region IV. 

F o r  these regions we have the fol lowing results:  

Region  I, two roots,  one posi t ive and one negative,  
Region  II, four roots,  one posit ive,  one negat ive and  two complex  conjuga te  with 

R e X > 0 ,  
Reg ion  III ,  six roots,  one posit ive,  one negative,  two complex  conjugate  with Re ?~ > 0 

and two complex  conjugate  with Re ~ < 0, 
Region  IV, four roots,  three posi t ive and one negative. 

The values of m and D on the b o u n d a r y  of  the four regions be long  to a set of  measure  
zero and for that  reason they will not  be  considered.  W e  only  remark  that  for values of m 
and  D with D - m _+ 4 = 0 s tanding  waves occur  (Re 2~ -- 0). 

4. The influence of the parameters ~1 and N 

In  Section 3 we cons idered  the equa t ion  for the wavelength  (2.20) with ~/ and  N equal  to 
zero. We will now discuss the inf luence of  small  values of  ~ /and  N on the charac te r  of  the 
waves. 
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We assumed in Section 2 by (2.5), (2.10) and (2.14): 

w(x, t)=A e -i(xx+'), (4.1) 

where ~ has to be a root of (2.21). For R E X > 0  we have a wave moving in the 
downstream direction and for Re ~ < 0 a wave moving upstream. The sign of the 
imaginary part of X indicates that we have a wave with an increasing or a decreasing 
amplitude in its direction of motion. When the imaginary part  is zero we have a wave with 
constant amplitude. Hence for ~/and N equal to zero we have the following waves for the 
regions denoted in Figure 3.5: 

Region I, two waves, one downstream and one upstream, both of constant amplitude, 
Region II, four waves, one downstream and one upstream, both of constant amplitude, 

and two downstream, one with increasing and one with decreasing amplitude, 
Region Ill ,  six waves, one downstream and one upstream, both of constant amplitude; 

further two downstream and two upstream, each type has one wave with 
increasing and one with decreasing amplitude, 

Region IV, four waves, three downstream and one upstream, all of constant amplitude. 

The waves increasing or decreasing for 7) = N = 0, increase or decrease exponentially. 
They will continue to increase or decrease exponentially for sufficiently small values of 77 
and N. We will call them strongly-increasing or strongly-decreasing, respectively. Whether 
the waves of constant amplitude ()t real) for ~1 = N = 0 become increasing or decreasing 
for non-zero values of ~/and N depends on the influence of ~/and N on the real zeroes 
of (3.1). In fact, when a root is displaced from the real line into the upper (lower) 
halfplane it means that the amplitude of the wave increases (decreases) with increasing 
values of x. 

We now calculate the imaginary part  of the disturbed values of X for those waves 
which in the inviscid case (~ = N = 0) have constant amplitude. We denote the disturbed 
roots by X and write ~ = ~ +  y where Xr is the real root for the inviscid case. 
Substitution of ~, = ~ + "/ in (2.21) and expansion of the resulting equation wi{h respect 
to small values of ,/, ~ and N yields 

- I X ~ I ~ / + c N  z ( x r - 1 ) 5  + O ( ~ N ) + O ( N  3) , (4.2) ~k r 
Im X = Im 7 = h(Xr ) ~k2r 

where 

h(Xr)  = - 6~2r + 16~ r - 10 - 41X, lm. (4.3) 

We consider the two c a s e s  •r < 0 and Xr > 0 separately. 
First, Xr < 0; then we have upstream waves. Because of h(X) being negative for X < 0, 

Im "/ will be negative for all small values of 77 and N. This means that the corresponding 
upstream waves for 77 > 0 and N > 0 have a slowly-decreasing amplitude. By a slowly-de- 
creasing (increasing) amplitude we mean that the decreasing (increasing) behaviour 
disappears in the inviscid and incompressible case, that is, for ~ = N = 0. 

Second, X r > 0; then we have downstream waves. In this case the function h(X) is 
positive if and only if 

m < 4 - ~ (4.4) 
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and 

v I < X < v2, (4.5) 

where v 1 and v 2 are defined in (3.5) and (3.6), respectively. Hence h(Xr) is positive for the 
middle one of the three positive real zeroes in region IV and negative for all other positive 
real zeroes in the whole D, m-plane. 

Since g(0) = - 2 and g(1) = D - m, the positive real zero for m and D in the regions I, 
II  and III  is smaller (greater) than one for m < D (m > D). This means that for m < D in 
the regions I! and III  Im X will be positive for all small values of ~ and N. So we have a 
wave with a slowly-decreasing amplitude. For m > D in the regions I and I! the sign of 
I m y  depends on the way in which ~ and N tend to zero. We have a wave with a 
slowly-decreasing or increasing amplitude. 

When m and D are situated in region IV there are three positive real zeroes ?trl, )'r2 
and Xr3 with 

~r l  < Pl < ~kr2 < /22 < ~r3" (4.6) 

On account of (3.8), Xr2 and Xr3 are greater than one. For m < D (m > D) Xrl will be 
smaller (greater) than one. Hence the sign of Im ~'1, when m > D, and the signs of Im 72 
and Im 73 depend on the values of ~1 and N. For m < D I m  Yl will be positive for all 
values of ~ and N. 

So we find that some waves of constant amplitude for ~ = N = 0 can be the limit of an 
increasing or of a decreasing wave. This depends on the behaviour of ~/N for ~ --* 0 and 
N -~ 0. In other words, from one such a wave (7 = N = 0) can arise a slowly-increasing or 
slowly-decreasing wave for ~ ~ 0, N 4~ 0. Only for m < D in the regions II and III  the 
behaviour of the upstream and downstream waves, which in the inviscid and incom- 
pressible case are waves of constant amplitude, is unique. They are waves with a 
slowly-decreasing amplitude. 

In the next section we will discuss the waving motion of a semi-infinite plate. At great 
distance from the trailing edge we expect the same type of waves as in the case of the 
two-sided infinite plate. We want to restrict ourselves to values of rn and D for which the 
above-mentioned unique behaviour of the slowly-decreasing waves occurs. We assume the 
plate to be at rest at x = + oo in the case of non-zero values of 7/and N. Hence m and D 
will be chosen in region II with m < D. This region will be denoted by II a. In the sequel 
we will restrict ourselves to this region. 

5. The semi-infinite plate 

In the following sections we will investigate the fluid flow in the neighbourhood of the 
trailing edge of the plate. We assume the leading edge to be upstream at infinity, since it is 
to be expected that the nature of a possible singular behaviour of the flow depends only 
on what happens in the direct neighbourhood of the trailing edge. 

Using the same dimensionless quantities as introduced in (2.10) we find the following 
boundary-value problem for the semi-infinite plate: 

( 02 02 ) ieNqv) N 02~p 2iN~xx +Nep=O , - - +  ( c p -  CN~x~ . . . .  0x 2 ~y2 3x 2 
(5.1) 
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3y 3y ' icP++ 3x 3x ' x < 0 ,  y = 0 ,  (5.2) 

+ Dcp- ~W 3cO _ _ i w - - -  x > 0 ,  y = 0 ,  (5.3) 
3y 3)' 3x ' 

iq0++ 3¢P+ / (i99-+ 3~p- + mw + i~w, -- --'~-X ) = _ O 04W 
- ~ x  ] ~x 4 

x > 0, y = 0. (5.4) 

We now introduce the Fourier transforms 

O_(X, y ' ~ 0 ) =  2--~ £ cp(x, y ~ O )  eiXXdx, (5.5) 

,+(X,  y><O)= 2 ~ - f  ° qo(x, y ~ O )  e'XXdx, (5.6) 

if(X, y ~ 0 ) = 0 _ ( X ,  y~0 )+ep+(X ,  y ~ 0 ) .  (5.7) 

For m and D in the region II a of Figure (3.5) and 7/ and N non-zero, we have an 
upstream wave in the plate and in the fluid with a slowly-decreasing amplitude. The 
downstream wave in this region has a strongly-increasing amplitude, hence the "leading 
edge" at x = + oe is at rest. By this motion of the plate free vorticity is shed at the trailing 
edge. This concentrated free-vortex sheet is not dispersed in the fluid even when 71 and 
N =~ 0, hence theoretically its strength does not tend to zero for x --+ - oo. This can be 
understood by the absence of shearing forces in our model of the fluid. Then the 
disturbance velocities of the fluid in the wake of the plate do not vanish for x ~ -oe .  
Hence in order to apply a Fourier transformation to equations (5.1)-(5.4) we have to take 
the imaginary part of X negative and with sufficiently small absolute value. 

By transformation of (5.1) we obtain 

ep(X, y > O) = E ( X )  e -{X2-N{x-1)z/(I+ieN{h-I)}}I/2y 

and 

(5.8) 

dO(X, y < O) = F ( X )  e (~:-N(X-1)2/(I+i'N(X-I)))'/2y, 

with again (2.16), 

Re{ x 2 -  N ( X - 1 )  2 )1/2 
1 + i ~ ( - £  7 1) > O, 

(5.9) 

(5.10) 

for all values of X. The cuts in the complex X-plane, introduced to make the square root 
single-valued, will be the same as in Section 2. 

From (5.2) and (5.3) we find 

--~(h, 0 +) = ~--~ (X, 0-) .  (5.11) 



Hence, we must have on account of (5.8) and (5.9): 

E(?`) = - F ( h ) .  

Fourier transformation of (5.3) yields 

3q)+ ()~, 0+ ) = i(?, - 1 )W+(h)  + w(0) 
ay 2¢~' 
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( 5 . 1 2 )  

(5.13) 

where W+(?`) is the one-sided Fourier transform of w(x) for 0 < x < c~, analogous to 
(5.6). From (5.2) and (5.4) we obtain 

i(1 - 2,) { q,(2,, 0 +) - 0 ( ) , ,  0 - ) }  

?,2D aw i?,3D . . 
=(rn+i~-?,4D)W+(?,) ~ a x ( 0 ) +  2-~-~w(0)' ( 5 . 1 4 )  

where we supposed 32W//3X2(0) and 33w/3x3(O) to be zero. This means that we do not 
expect such a strong singularity of the pressure in the neighbourhood of the trailing edge 
of the plate that it would induce a singular normal force in the y-direction or a singular 
bending moment. In fact, under these assumptions it turns out that the singularity of the 
pressure near the trailing edge is at most of strength O(x-~/2),  which does not give rise to 
singular forces or moments at x = 0. 

Combination of equations (5.7) upto (5.14) results in 

F 
3(/,  (?`, 0) i W+(?`)12(1 ?`)2 
3y 2(1- X) L - + (m + i ~ -  ?,4D) 

X{ )~2- 1 +i--~)7---1)N(h-1)2 }1/2] 

_ -w(0)[ 2~3D { 
1 + 2(i---a) ? , 2  - 

N(?,- 1)2 }l/2] 
a ; i~-(i--1) 

1/2 

I / - 2 ~ - ? ` )  ~-~x ( 0 )  ?,2_ 1+ i - -~ (~ - - -1 )  (5.15) 

This Hilbert problem for the unknown functions 30_lay and W+ is defined on a line L 
just below the real axis of the complex ?,-plane. The line L divides the plane into regions 
S + and S- ,  situated to the left- and right-hand side of L with respect to the positive 
x-direction. In general, a subscript " + "  or " - "  attached to a function denotes that such a 
function is regular in S + or S- ,  respectively. 
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6. The Hilbert problem 

First we solve the homogeneous part of equation (5.15) in a way as discussed in [4]. 

x ( x ) - x + ( x ) - -  

Writing 

i [2(1 - X)2 + (m + i~ - XaD){X2- 
2(1 - X )  

def 
= X _ ( X ) - X + ( X ) T ( X ) = O ,  

   _1,2/1J2 l 1 + i - ~ ( ? ~ - -  1) 

(6.1) 

we have to perform the factorization of T(X). This is done by multiplying T(X) by a 
suitable function in such a way that the resulting function G(X) has the following 
properties: 

1) G(X) satisfies the HNder condition on the line L, 
2) G(X) has no zeroes on the line L, 
3) G(X) tends to one for Re X --* +_ oo on L, 
4) The increase of the argument of G(X), when ~ travels along L from - oo to + oo, is 

zero. 

The asymptotic behaviour of T(X) on L reads 

iD 4 
lim T(X) = _+ ~--X. (6.2) 

Re X ~ ± o o  

We define G(X) by 

1 2 
G(X) = T(~) (~2 + s2)3/2(X+ iq) i D '  (6.3) 

where s is some real positive number and where the square root is made single-valued by 
requiring 

Re{ X 2 + s 2 }1/2 > 0. (6.4) 

The sign of the constant q will be discussed in the next section. In connection with the 
required property (4) of G(X) we will find that q has to be positive. Then G(~) has the 
properties (1) upto and including (4). 

Now we can factorize G(X), 

a_(x) 
G(X) G+(X)' X L, (6.5) 

where 

1 f ?  lnG($)d~ ,  ~ L ,  X ~ S  ± 
O + ( X ) = e x p - ~  oo ~ - X  (6.6) 
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The integral in (6.6) is convergent on account of the properties of G(X). From (6.1), (6.3) 
and (6.6) we find (q > 0) 

G "X" iD. X (X)= _( ) -~(X-- is )  3/2, 

1 
= . ( 6 . 7 )  X+(X) G+(X) (h+is)3/2(X+iq) 

Substitution of this result into the inhomogeneous equation (5.15) yields 

0~_ 1 w+(x) 1 
0y (h, 0) X_()~-----) X+(X----~ 

2x/~- 1+ 2(1-h-------~ h2- l + i - ~ ( ) ~ - - l )  X_(h) 

Ow iX2D {h2_ N(X-1)2 }I/21 
Ox(0) 2 2 ~ O - h )  1 + i ~ ( - £ 7 1 )  X+(X)" 

(6.8) 

Now we have to split the right-hand side of (6.8) into two terms, one of which is regular in 
S- and the other is regular in S +. By use of (6.1) this right-hand side can be written as 

w(O) 
2/~x_(a) 

1 ih2D_~ (0)} { w(0) haD + 

- i  ( l - X )  } 1 
X X~-(k) X_--(~-) (m+i , / -X4D) " 

(6.9) 

By adding and subtracting poles we obtain 

-w(O) 
2v~-#x_(a) 2~ (m + i~- h4D)X_(h ) 

+ (1 -)~) 

4(m+i~)'/4{(m+i~)'/4-in'/aa}x (-i( m+i~ 

+ (1 -X)  ( 1") 
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((m+i~ ,j4) 4(m + in)3/4{ (m + in)l/4- Dl/4~t } X+ ------~-~) 

4~m+ i~3J4~m + i~'J4 + iO1J4~ ~ X+ ( i ( ~ )  'j4) 

w(0) ~3D + ih2D ~--~ (0) - i  

2v/~ - { (m + iT - X4D) X+ (X) 

-I- 

(1 - X )  

X [ .[ m + i n  ]1/4] 4(m + in)3/4{ (m + in) 1/4- iD1/4X } _ t - I t  ~ ] ) 

4(mq_i~)3/4{(mq_i~)l/4q_ol/4~k}g_(_(mq_i n~) 

(6.10) 

Using (6.10), the relation (6.8) becomes 

~)q~- (X, 0) 1 H_(h)  = 1 ay X_ ( ~ . ~  W+ (h) X---f~ + H+(~.), (6.11) 

where the left-hand side is regular in S-  while the right-hand side is regular in S +. For 
I Xl-- '  ~ ,  X ~ S-  this left-hand side behaves algebraically and the right-hand side 

behaves algebraically for I X I ~ ~ ,  X ~ S +. Hence by Liouville's theorem, the general 
solution of the Hilbert problem (5.15) is given by 

a,~_ (x, o) = (H_(x) + O(X))X(X),  ~y (6.12) 

W+(X) = {-H+(X)+Q(X)}X+(X), (6.13) 

where Q(X) is an unknown polynomial. 
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In this section we show that the constant q, introduced in (6.3), has to be taken positive in 
order to have property (4) of G(X) (Section 6). We consider the behaviour of G(X) when 
X on L, just below the real axis, while Re X increases from - ~ to + ~ .  Substitution of 

X = / t - i S ,  

into (6.3) yields 

- o o  <t~< oo,0 <8<<  (n, N 2) (7.1) 

G ( ~ t - i S ) = - [ 2 ( / t - l - i 3 ) 2 +  { m + i n - ( / t - i 8 ) 4 D }  

N ( / t -  1 - i8) 2 1/21 
× { (/t - 18)2 - ,1 + i ~ - ~  -- i_--i8) } 

J 

× /t - i8 - iq , (7.2) 

D { ( / t _  i8)2 + s2 }3/2{(/t_ i8)2 + q2 } ( / t_  1 - i 8 )  

where the real part of the square roots has to be chosen positive, again in connection with 
(2.16) and (6.4). Expansion of the expression between square brackets of (7.2) for small 
values of n, N and 8 gives 

def { N(g-e-i '8)Z } '/2 
R =  2 ( g - l - i 8 )  2 + { r e + i n -  ( / t - i S ) 4 D }  - ( / t - i S )  2 -  1 + i-~-(/ t-£-l-C[8) 

= 2(/t - 1)2 - 4 8 ( ,  - 1)i + { m + iT - (/~t4 - 48tt3i) D } 

xl/t I [1 8i/t 2/t (/t2_ 2/t+ l_ 28/ti+ 28i){l_ieN(/t_ l_i8)}] 

+O(32)  + O(N2) .  (7.3) 

Equation (7.3) is valid when/ t  is bounded away from zero, I/t] >//t0 > 0 for some fixed 
/to. This condition is not troublesome as will be discussed below (7.4). The expression 
between square brackets in (7.3), the expansion of the square root, is correct upto third 
order in N for the real part, while the imaginary part is correct upto fourth order in N. 
We separate the real and imaginary part of (7.3) and neglect 8 with respect to n and N 2 
on account of (7.1). Then we find 

R=2(/t-1)2+(m-/t4D)]/t,{1 N(~--1)2  } + O(N2)  2/t2 

+-i{(m-/t4D) ]/t~-I IgN2(p,-1)3 q- hi/t] q-O(nN)-]- O(N3)} (7.4) 2/t2 " 
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We are interested in Im R when Re R---0. Since Re R ~. 2 for /~ = 0 the condition 
imposed on /t (# >~/% > 0) is satisfied for the values of # of interest. In the case of 
Re R = 0, the corresponding values of/~ must approximately satisfy 

2(/z - 1) 2 + (m - / x ' D )  I/xl = 0. (7.5) 

The equation (7.5) corresponds with the equation for the wavelength (3.1) for the 
two-sided infinite plate. For values of/~ satisfying (7.5), Im R becomes 

Im R = n l/~l + eNZ(1 - ~t)5 + O(7/N) + O(N3) .  (7.6) 
/~2 

Analogous to Section 4 we can show that for m and D in region II a this expression is 
positive for all sufficiently small values of~/ and N. So we reach the conclusion that R 
does not encircle the origin when A =/~ - i8 moves for constant 8 just below and parallel 
to the real axis from # = Re A = - oo towards/~ = Re A = + oo. 

Next we consider the factor S of R in (7.2), 

aef /~ - i8 - iq 
S = (7.7) 

D { ( / t _ i S ) 2  + s  2}3/2{(/~_i6)2 + qZ}(/~_ 1 - i 6 )  

The argument of the denominator of S increases by ~r when/ t  passes from - oo towards 
+ ~ .  Hence, if we take the constant q, introduced in (6.3), to be positive, the total change 
of the argument of (7.7) is zero when A moves on L from Re A = - ~  towards 
Re A = + oo. Then also the argument of the product - R S  which is the function G of 
(7.2), will have the same value at both "ends" of the line L. 

8. The polynomial Q ( k )  

Because (6.12) is the one-sided Fourier transform of the velocity component in the 
y-direction in the wake of the plate, we have to require 

tim 3 O - ~ ( A , 0 ) =  lim {H_(A)+Q(A)}X_(A)=O, A~S-.  

Since we have from (6.6) 

lim G ± ( A ) = I ,  A ~ S  ±, 
I~,1 --, oo 

the asymptotic behaviour of X_(A), (6.7), is given by 

lim X _ ( A ) =  i-~k(~k--is)l/2+O(lAI1/2), A ~ S - .  
I A l ~ o o  

(8.1) 

(8.2) 

(8.3) 
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Hence the behaviour of H ( ~ ) ,  (6.10), for 13~1 ~ ~ is determined by 

a 1 a2 lim H-(?~)=P(X)+--~+-i-;+O(IXl-5/2)'A'-- X ~ S - ,  (8.4) 
I~1 --,~ 

where P(?~) is a polynomial of degree three. The four coefficients of this polynomial and 
the constants a] and a 2 depend on m, D, w(O), aw/ax(O) and the values of 

X_(  .( m + i~/ ]1/4~ - - 1 1 ~  ) )' X+(( -~)  1/4) 

and X+(it ) 'j4) 
Since for given m and D the functions X_(?t) and X+(~,) are fixed, the six constants 
mentioned above are completely determined by the values m, D, w(0) and aw/ax(O). 

In order to satisfy the condition (8.1) we have on account of (8.3) and (8.4) to choose 
the still unknown polynomial Q(~)  as 

Q(X) = - P ( X ) .  (8.5) 

Next we have to choose the unknown constants w(0) and aw/ax(O) such that 

a I = 0, (8.6) 

which by (8.3) is necessary for satisfying (8.1). Then the asymptotic behaviour of (8.1) 
becomes 

.aw 

lim % - ~ ( ) k , 0 ) =  iD w(0)- ] -~-x(0)  O(17~1-3/2), X ~  a2~-~ ~vr~-Z- is - + S-. (8.7) 
Ix l -~  2¢%-X 

The leading term in (8.7) gives rise to a square-root singularity of the velocity in the 
y-direction at the trailing edge of the plate. This follows from the inverse Fourier 
transformation which yields the following asymptotic behaviour for x ? 0: 

lira a2D { 0 e -lax . e~  e -ixx 

lim a2D ( i - l ) [  ~ c ° s  ?~[x[ +sin Y~lxl d~ 
J0 

fo = lim a2D ( i - l )  ( cosu  2 + s i n u  2) du x~0 

lim a 2 D ( i -  1) (8.8) 
x-,O 2v/Ix I 
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Hence we have to require 

a 2 = O, (8.9) 

in order to satisfy the Kutta condition, or in other words to have finite velocities near the 
trailing edge of the plate. 

9. The vorticity at the plate 

In the preceding section we found a square-root singularity for the velocity near the 
trailing edge of the plate when a 2 ~ 0, (8.9). We will show that then the bound vorticity 
per unit of length in the if-direction, F ( i ,  i), which replaces the plate, has also a 
square-root singularity. This vorticity is reckoned positive when F(ff, {) points with a 
right-hand screw in the positive ~-direction (Figure 2.1). 

After introducing the dimensionless quantities (2.10) and F(x)  by 

F(~,  [ ) =  U F ( x )  e -it , (9.1) 

the equation of motion (2.13) of the plate can, in a close neighbourhood of the trailing 
edge, be written as 

r ( x )  = - r o w  + D ~ "" - i , w ,  
ax 4 

(9.2) 

where , / i s  the damping coefficient of the plate. Here we neglected the term 3[t~]+_/3t of 
(2.3) because even if a square-root singularity of F(x)  occurs, this remains finite. So a 
square-root singularity of F(x)  corresponds to a square-root singularity of 34w/3x 4. By 
use of the solution W+(~), (6.13), we will calculate this singularity of 34w/3x 4. Fourier 
transformation of 34w/3x 4 yields 

1 r ~ 04W ihx ~k 2 3w iX3 w'0",  
Jo 3x -----~e dx=~'4W+(~k)d-~-~ ~x(0)- 2-~--~ () (9.3) 

where, as in Section 5, we supposed 

O 2 w  ( 0 )  = o 3 w  " " 
3x----- S ~ (0) = 0. (9.4) 

To determine the behaviour of W+(X) for I X I ~ ~ ,  X ~ S+, we must determine by 
(6.13) the asymptotic behaviour of X+(~) and H+(X). Using (6.7) we obtain 

l im  X+(h) 1 Ixt~o~ ~2 ~x/X~_ +O(IXl-7/2) ,  X ~ S  ÷. (9.5) 
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Combination of (6.10), (8.4), (8.5) and (8.6) yields 

lim - H + ( X ) + Q ( X ) =  lim 
w(0))t3D + i)t2D~xW (0) 

- i  

(m + b l -  )t4D)X+(X ) 

al a2 -3) 
+P(X)  + -X- + ~-  + O(IXl + Q()~) 

i w(O) X3 + iX2-~ (0) 
lim 

IXI --+°0 X4X+ (X) 21~ 
a2 + - -  ?,2 

iw(0) (m + bl) v~-+ is 
+ ~ D ~ S -  + O ( I X I - 3 )  , X~S +. 

(9.6) 

Hence we have 

lim ),4W+(X)+ X2 3w iX 3 . .  
,~,_+~ ~ Ox (o)- 2~-w(O) 

lim a2 iw(O) ixi--~ ~ +  + ~ +°(IXl-3/2)' x ~ s +  (9.7) 

Using the inverse Fourier transformation we find the following asymptotic behaviour 

lim 34w lim a2 f - i / " °  e-'X~ - = a 2 ( 1 - i )  - = - - d X  + / ' ~  e-ixxd)t ] lim (9.8) 
x$0 OX 4 xJ, 0 2--'~ 1 J -  ~ ¢ l X l  JO ~ ] x-,"0 ¢lXl 

By (9.2) the result for the bound vorticity F(x) is 

l imF(x)  = lim a2D(1 - i) (9.9) 
x,O xXO v/Ixl 

This singularity of the bound vorticity induces indeed a singularity of the disturbance 
velocity in the y-direction of the type given in (8.8). 

10. The waves in the plate 

In this section we recapitulate the waves which occur in the semi-infinite plate in case 
(m, D) ~ II a. 

The inverse Fourier transformation yields for the displacement w(x) of the plate 

w ( x ) =  1 o~ f_ ( - H + ( X ) + Q ( X ) ) K + ( X ) e  -ix~dh. (10.1) 
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Hence the deformation pattern for x ~ + oo is determined by the poles of 

(-H+(h)+Q(h))X+(h), (10.2) 

lying just below the line of integration. We have (6.1) 

x_(h)  = x + ( h ) r ( h ) ,  (lO.3) 

where X_(h)  and X+(h)  are regular functions without zeroes in the lower- and upper- 
halfplane, respectively, defined in (6.7). So the zeroes of T(h)  with a positive imaginary 
part are zeroes of X_(h) ,  while the zeroes of T(h)  with a negative imaginary part are 
poles of X+(h).  The pole h = 1 of T(h),  which is also a pole of X_(h) ,  describes the 
periodic disturbance velocity in the wake, which has a non-dimensional length period 1. 

In Section 4 we have discussed the zeroes of T(h)  for (m, D) ~ II a. First, we found one 
zero with a positive real part and a negative imaginary part. This corresponds to a 
strongly-increasing downstream wave. Second, we had a zero with a negative real part 
and, in the case of non-zero values of 71 and N, a negative imaginary part. This yields a 
slowly-decreasing upstream wave. 

From (6.10) it is seen that the first factor of (10.2) also has poles with a negative 
imaginary part at 

m + i~/11/4 _i( m + i7/)1/4 
h = - (  D ] ' h =  ~ . (10.4) 

However, a simple calculation, using (6.1), shows that the residue belonging to these 
values of h is zero. So they give no contribution to w(x). 

From the foregoing it follows that the wave pattern of the plate for large values of x, 
consists of a strongly-increasing downstream wave and a slowly-decreasing upstream 
wave. By this the "leading edge" at x = + oo is at rest for non-zero values of ~ and N. 

11. Numerical results 

In order to satisfy the Kutta condition at the trailing edge of the waving plate we have to 
satisfy the two conditions (8.6) and (8.9), namely 

a 1 = 0, a 2 = 0. (11.1) 

These quantities are defined by (8.4) and can be written as 

01 = ClW(O ) + C2~-X (0) = O, (11.2) 

aw 
a 2 = C3w(0 ) + C4--~- x (0) = 0, (11.3) 

where C1 . . . . .  Ca can be calculated as complex-valued functions of m and D (~1 = 0) in a 
straight-forward way. 
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At first sight, to satisfy (11.2) and (11.3), it seems that we can take 

0 w  
w(0) = -~-x (0) = 0. (11.4) 

However, then, by (6.10), H_(20  = H+(2~) = 0 and, by (8.4) and (8.5), Q(2Q = 0. Hence 
by (6.12), (Od~_/Oy)(2~, 0) = 0 and no motion of the plate exists. From this we conclude 
that, in order to allow for a hydro-elastic motion, we have to take (w(0), 0 w/Ox (0)) =~ (0, 0). 

But then it has to be required 

def 
Z(m, D) = 1CIC4 - C2C 3 t = O, (11.5) 

where the absolute value of the complex quantity is taken. It is not difficult to show that, 
although the values C 1 . . . . .  C 4 depend on m and D in a "more  general way", the zeroes 
of Z(m, D) depend only on m/D. 

The function Z(m, D) contains some complicated integrals namely 

.[ rn ~1/4~ [ { m ~1/4~ 
X_(- , t -~}  }, X+[it~ } ), (11.6) 

which are defined by (6.7) and which have to be calculated numerically. 
A check on the computer program is that the quotient (6.1), 

x_(x)/x+(x) = r ( x ) ,  (11.7) 

has to be independent from the chosen values of q and s which occur in X_(X) and 
X+(20. We do not enter into the numerical details but refer to [5] (in Dutch). 

As has been mentioned already several times, we confine ourselves to 

(m,  D)  ~ II a. (11.8) 

It turns out that on the part inside of II a of a circle around the origin, which encloses 
region IV and cuts the D-axis in a point with D < 4 (Figure 11.1), the function 
Z(m, D) ~ O. Then, because the zeroes of Z(m, D) depend only on m/D (below (11.5)), 

m 

AA 
- D  

4 
Figure 11.1. The region II a with circle. 
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it follows that 

Z(rn ,  D ) 4 : 0 ,  (rn, D ) ~ I I  a. (11.9) 

Hence, for this set of parameters,  the Kut ta  condit ion at the trailing edge of  the plate 
cannot  be satisfied. 

We conclude with a remark about  what  could have been the consequence of  finding a 
zero (rn, D)  = (rn*, D*) of  Z ( m ,  D).  Suppose we have a physical situation defined by ~ ,  
D, U and p. Then by (2.10) we find 

rn* ~ U  4 
D* ~ w  2 '  (11.10) 

f rom which follows an ~0 for which the Kut ta-condi t ion is satisfied. Then by experiment it 
could be tried to verify that this t0 occurs when the plate carries out its hydro-elastic 
motion.  
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